MicroFPGA: an affordable FPGA platform for microscope control

Author:

Deschamps JoranORCID,Kieser Christian,Hoess PhilippORCID,Deguchi TakahiroORCID,Ries JonasORCID

Abstract

Modern microscopy relies increasingly on microscope automation to improve throughput, ensure reproducibility or observe rare events. Automation requires in particular computer control of the important elements of the microscope. Furthermore, optical elements that are usually fixed or manually movable can be placed on electronically-controllable elements. In most cases, a central electronics board is necessary to generate the control signals they require and to communicate with the computer. Fur such tasks, Arduino microcontrollers are widely used due to their low cost and programming entry barrier. However, they are limiting in their performance for applications that require high-speed or multiple parallel processes. Field programmable gate arrays (FPGA) are the perfect technology for high-speed microscope control, as they are capable of processing signals in parallel and with high temporal precision. While plummeting price made the technology available to consumers, a major hurdle remains the complex languages used to configure them. In this work, we used an affordable FPGA, delivered with an open-source and friendly-to-use programming language, to create a versatile microscope control platform called MicroFPGA. It is capable of synchronously triggering cameras and multiple lasers following complex patterns, as well as generating various signals used to control microscope elements such as filter wheels, servomotor stages, flip-mirrors, laser power or acoustooptic modulators. MicroFPGA is open-source and we provide online Micro-Manager, Java, Python and LabVIEW libraries, together with blueprints and tutorials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3