Simulation of Energy Regeneration in Human Locomotion for Efficient Exoskeleton Actuation

Author:

Laschowski BrokoslawORCID,Inkol Keaton A.ORCID,Mihailidis AlexORCID,McPhee JohnORCID

Abstract

AbstractBackdriveable actuators with energy regeneration can improve the efficiency and extend the battery-powered operating times of robotic lower-limb exoskeletons by converting some of the otherwise dissipated energy during negative mechanical work into electrical energy. However, previous related studies have focused on steady-state level-ground walking. To better encompass real-world community mobility, here we developed a feedforward human-exoskeleton energy regeneration system model to simulate energy regeneration and storage during other daily locomotor activities. Data from inverse dynamics analyses of 10 healthy young adults walking at variable speeds and slopes were used to calculate the negative joint mechanical power and work (i.e., the mechanical energy theoretically available for electrical energy regeneration). These human joint mechanical energetics were then used to simulate backdriving a robotic exoskeleton and regenerating energy. An empirical characterization of the exoskeleton device was carried out using a joint dynamometer system and an electromechanical motor model to calculate the actuator efficiency and to simulate energy regeneration. Our performance calculations showed that regenerating energy at slower walking speeds and decline slopes could significantly extend the battery-powered operating times of robotic lower-limb exoskeletons (i.e., up to 99% increase in total number of steps), therein improving locomotor efficiency.

Publisher

Cold Spring Harbor Laboratory

Reference25 articles.

1. State of the art and future directions for lower limb robotic exoskeletons;IEEE Trans. Neural Syst. Rehabil. Eng,2017

2. Compact gearboxes for modern robotics: A review;Front. Robot. AI,2020

3. An overview on principles for energy efficient robot locomotion;Front. Robot. AI,2018

4. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot;IEEE/ASME Trans. Mechatron,2015

5. J. Hollerbach , I. Hunter , and J. Ballantyne , “A comparative analysis of actuator technologies for robotics,” in The Robotics Review 2, 1992, pp. 299–342.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3