Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament

Author:

Maufront Julien,Guichard Bérengère,Cao Lu-Yan,Di Cicco Aurélie,Jégou AntoineORCID,Romet-Lemonne GuillaumeORCID,Bertin AurélieORCID

Abstract

AbstractThe fine regulation of actin polymerization is essential to control cell motility, architecture and to perform essential cellular functions. Formins are key regulators of actin filament assembly, known to processively elongate filament barbed ends and increase their polymerization rate. Based on indirect observations, different models have been proposed to describe the molecular mechanism governing the processive motion of formin FH2 domains at polymerizing barbed ends. Using electron microscopy, we directly identified two conformations of the mDia1 formin FH2 domains in interaction with the barbed ends of actin filaments. These conformations agree with the open and closed conformations of the “stair stepping” model proposed by Otomo and colleagues1. We observed the FH2 dimers to be in the open conformation for 79% of the data, interacting with the two terminal actin subunits of the barbed end, while they interact with three actin subunits in the closed conformation. Further, our data reveal that the open state encompasses a continuum of states where the orientation of the leading FH2 domain with respect to the filament long axis varies from 108 to 135 degrees. In addition, we identified FH2 domains encircling the core of actin filaments, providing structural information for mDia1 away from the barbed end. Based on these direct observations, we propose a model of formin in interaction with the growing filament end, as well as with the core of the filament.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3