A Chemical-mechanical Coupled Model Predicts Roles of Spatial Distribution of Morphogen in Maintaining Tissue Growth

Author:

Ramezani Alireza,Britton Samuel,Zandi Roya,Alber Mark,Netmatbakhsh Ali,Chen WeitaoORCID

Abstract

AbstractThe exact mechanism controlling cell growth remains a grand challenge in developmental biology and regenerative medicine. The Drosophila wing disc tissue serves as an ideal biological model to study growth regulation due to similar features observed in other developmental systems. The mechanism of growth regulation in the wing disc remains a subject of intense debate. Most existing models to study tissue growth focus on either chemical signals or mechanical forces only. Here we developed a multiscale chemical-mechanical coupled model to test a growth regulation mechanism depending on the spatial range of the morphogen gradient. By comparing the spatial distribution of cell division and the overall shape of tissue obtained in the coupled model with experimental data, our results show that the distribution of the Dpp morphogen can be critical in resulting tissue size and shape. A larger tissue size with a faster growth rate and more symmetric shape can be achieved if the Dpp gradient spreads in a larger domain. Together with the absorbing boundary conditions, the feedback regulation that downregulates Dpp receptors on the cell membrane allows the further spread of the morphogen away from its source region, resulting in prolonged tissue growth at a more spatially homogeneous growth rate.Summary StatementA multiscale chemical-mechanical model was developed by coupling submodels representing dynamics of a morphogen gradient at the tissue level, intracellular chemical signals, and mechanical properties at the subcellular level. By applying this model to study the Drosophila wing disc, it was found that the spatial range of the morphogen gradient affected tissue growth in terms of the growth rate and the overall shape.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. A simplified mathematical model of tumor growth;Math. Biosci,1986

2. Model for the regulation of size in the wing imaginal disc of Drosophila

3. Integrating force-sensing and signaling pathways in a model for the regulation of wing imaginal disc size;Dev. Camb. Engl,2012

4. Decapentaplegic and growth control in the developing Drosophila wing

5. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis;Dev. Camb. Engl,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3