The phoenix hypothesis of speciation

Author:

Yamaguchi RyoORCID,Wiley Bryn,Otto Sarah P.

Abstract

AbstractGenetic divergence among allopatric populations builds reproductive isolation over time and is thought to be the major mechanism underlying the formation of new species. This process is accelerated when populations face a changing environment, but abrupt change also places populations at risk of extinction. Here we use simulations of Fisher’s geometric model with explicit population dynamics to explore the genetic changes that occur in the face of extreme environmental changes to which populations must adapt or go extinct. We show that evolutionary rescue leads to the fixation of mutations whose effects are larger on average and that these mutations are more likely to lead to reproductive isolation, compared with populations not at risk of extinction. We refer to the formation of new species from the ashes of populations in decline as the phoenix hypothesis of speciation. The phoenix hypothesis predicts more substantial hybrid fitness breakdown among populations surviving a higher extinction risk. The hypothesis was supported when many loci underlie adaptation. When, however, there was only a small number of potential rescue mutations, we found that mutations fixed in different populations were more likely to be identical, with parallel changes reducing isolation. With a limited genomic potential for adaptation, we find support for a modified version of the phoenix hypothesis where reproductive isolation builds fastest in populations subject to an intermediate extinction risk. While processes driving extinction lead to the loss of lineages with deep evolutionary histories, they may also generate new taxa, albeit taxa with minimal genetic differences.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The phoenix hypothesis of speciation;Proceedings of the Royal Society B: Biological Sciences;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3