Comparative phyloproteomics identifies conserved plasmodesmal proteins

Author:

Johnston Matthew G.ORCID,Breakspear AndrewORCID,Samwald SebastianORCID,Zhang DanORCID,Papp DianaORCID,Faulkner ChristineORCID,de Keijzer JeroenORCID

Abstract

AbstractPlasmodesmata connect neighbouring plant cells across the cell wall. They are cytosolic bridges, lined by the plasma membrane and traversed by endoplasmic reticulum to connect these cell components between cells and tissues. While plasmodesmata are notoriously difficult to extract, tissue fractionation and proteomic analyses have yielded valuable knowledge of their composition. Most proteomic profiles originate from cell suspension cultures in which simple plasmodesmata dominate and have been exclusively generated from dicotyledonous plant species. Here we have generated two novel proteomes to expand tissue and taxonomic representation of plasmodesmata: one from mature Arabidopsis leaves and one from the moss Physcomitrium patens. We have leveraged these and existing data to perform a comparative analysis that, owing to comparing proteomes from an expanded taxonomic tree, allowed us to identify conserved protein families that are associated with plasmodesmata that likely serve as core structural or functional components. Thus, we identified β-1,3-glucanases, C2 lipid-binding proteins and tetraspanins as core plasmodesmal components, with proteins from P. patens and Arabidopsis maintaining plasmodesmal association across diverse species. Our approach has not only identified elements of a conserved, core plasmodesmal proteome, but also demonstrated the added power offered by comparative analysis. Conserved plasmodesmal proteins establish a basis upon which ancient plasmodesmal function can be further investigated to determine the essential roles these structures play in multicellular organism physiology in the green lineages.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3