Abstract
ABSTRACTThe structure of mRNA molecules plays an important role in its interactions with trans-acting factors, notably RNA binding proteins (RBPs), thus contributing to the functional consequences of this interplay. However, current transcriptome-wide experimental methods to chart these interactions are limited by their poor sensitivity. Here we extend the hiCLIP atlas of duplexes bound by Staufen1 (STAU1) ∼10-fold, through careful consideration of experimental assumptions, and the development of bespoke computational methods which we apply to existing data. We present Tosca, a Nextflow computational pipeline for the processing, analysis and visualisation of proximity ligation sequencing data generally. We use our extended duplex atlas to discover insights into the RNA selectivity of STAU1, revealing the importance of structural symmetry and duplex-span-dependent nucleotide composition. Furthermore, we identify heterogeneity in the relationship between STAU1-bound 3’ UTRs and metabolism of the associated RNAs that we relate to RNA structure: transcripts with short-range proximal 3’ UTR duplexes have high degradation rates, but those with long-range duplexes have low rates. Overall, our work enables the integrative analysis of proximity ligation data delivering insights into specific features and effects of RBP-RNA structure interactions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献