Evaluating multiple next-generation sequencing derived tumor features to accurately predict DNA mismatch repair status

Author:

Walker RomyORCID,Georgeson PeterORCID,Mahmood KhalidORCID,Joo Jihoon E.,Makalic EnesORCID,Clendenning MarkORCID,Como JuliaORCID,Preston SusanORCID,Joseland SharelleORCID,Pope Bernard J.ORCID,Hutchinson Ryan,Kasem KaisORCID,Walsh Michael D.,Macrae Finlay A.ORCID,Win Aung K.ORCID,Hopper John L.ORCID,Mouradov DmitriORCID,Gibbs Peter,Sieber Oliver M.ORCID,O’Sullivan Dylan E.ORCID,Brenner Darren R.,Gallinger Steven,Jenkins Mark A.ORCID,Rosty ChristopheORCID,Winship Ingrid M.ORCID,Buchanan Daniel D.ORCID

Abstract

AbstractIdentifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. We assessed tumor features, individually and in combination, in whole-exome sequenced (WES) colorectal cancers (CRCs) and in panel sequenced CRCs, endometrial cancers (ECs) and sebaceous skin tumors (SSTs) for their accuracy in detecting dMMR. CRCs (n=300) with WES, where MMR status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, MSISensor), COSMIC tumor mutational signatures (TMS) and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for 1) individual features, 2) Lasso statistical model and 3) an additive feature combination approach. Panel sequenced tumors (29 CRCs, 22 ECs, 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3%. The additive feature approach with ≥3/6 of MSMuTect, MANTIS, MSIseq, MSISensor, INDEL count or TMS ID2+ID7 achieved 99.7% accuracy. For the panel sequenced tumors, the additive feature combination approach of ≥3/6 achieved accuracies of 100%, 95.5% and 100%, for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs, however, an approach combining tumor features may improve dMMR prediction in both WES and panel sequenced data across tissue types.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3