Claudin-4, a core component of the tight-junctional complex along the collecting system, is induced in nephrotic syndrome

Author:

Olivier ValérieORCID,Sassi AliORCID,Arnoux Gregoire,Chambrey Regine,Roth Isabelle,Chassot Alexandra,Udwan KhalilORCID,Dizin Eva,Rutkowski Joseph M.,Cheval LydieORCID,Crambert GillesORCID,Wagner Carsten A.,Doucet Alain,Eladari Dominique,Moll Solange,Feraille EricORCID,Ramakrishnan Suresh K

Abstract

AbstractBackgroundNephrotic syndrome (NS) is characterized by massive sodium chloride retention. Along the kidney tubule, sodium and chloride reabsorption are coupled via a combination of transcellular and paracellular transport pathways. The mechanism of sodium retention in NS has been extensively studied, but the associated chloride transport pathway has not been elucidated.MethodsTo investigate the pathway of chloride retention in NS, we assessed the expression levels of both paracellular and transcellular components of chloride transport in the CD of POD-ATTAC mice and PAN rats, two rodent models of NS. We also used cultured mouse cortical collecting duct cells to see how overexpression or silencing of claudin-4 affect paracellular permeability. Finally, human renal biopsies were used to confirm our in vivo results.ResultsIn control animals, claudin-4 was expressed at low levels in collecting duct (CD). In POD-ATTAC mice and PAN rats, claudin-4 expression was strongly increased in CD beta-intercalated cells (B-IC) and to a lesser extent in CD principal cells and was also induced in connecting tubules. Similarly, we found that claudin-4 was expressed at low levels in normal human kidneys and was dramatically increased in CD cells of nephrotic human kidneys (focal and segmental glomerulosclerosis). In parallel, the expression of pendrin, which exchanges chloride for bicarbonates in B-IC, was decreased in nephrotic compared to control animals. However, the increase in claudin-4 expression observed in NS is likely independent of pendrin abundance. Increased claudin-4 abundance is coupled with increased ENaC-dependent sodium transport. Overexpression or silencing of claudin-4 in mCCDcl1 cells confirmed the preferential permeability of claudin-4 to chloride over sodium.ConclusionsThese results suggest that during NS, transcellular Cl-/HCO - transport decreases while paracellular chloride transport via claudin-4 may increase along the collecting system. Paracellular chloride permeability may constitute a chloride shunt that favors Na+ reabsorption and opposes K+ secretion along the CD in NS.Significance StatementNephrotic syndrome is a common disease characterized by massive proteinuria, hypoalbuminemia and edema due to renal sodium-chloride retention. We demonstrate for the first time an induction of claudin-4 expression indicating a partial shift from transcellular to paracellular chloride transport in the renal collecting system of nephrotic rodents. We confirmed the increased expression of claudin-4 in kidney biopsies of nephrotic patients, highlighting the translational significance of these results. Whether the paracellular pathway may represent a novel target to treat edema in nephrotic syndrome remains to be elucidated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3