Estimating RSV seasonality from pandemic disruptions: a modelling study

Author:

Krauer FabienneORCID,Fjelde Tor Erlend,Koltai MihalyORCID,Hodgson David,Treskova-Schwarzbach MarinaORCID,Harvey Christine,Jit MarkORCID,Wichmann OleORCID,Harder Thomas,Flasche StefanORCID

Abstract

AbstractBackgroundRespiratory syncytial virus (RSV) is a leading cause of respiratory tract infections and bronchiolitis in young children. The seasonal pattern of RSV is shaped by short-lived immunity, seasonally varying contact rates and pathogen viability. The magnitude of each of these parameters is not fully clear. The disruption of the regular seasonality of RSV during the COVID pandemic in 2020 due to control measures, and the ensuing delayed surge in RSV cases provides an opportunity to disentangle these factors and to understand the implication for vaccination strategies. A better understanding of the drivers of RSV seasonality is key for developing future vaccination strategies.MethodsWe developed a mathematical model of RSV transmission, which simulates the sequential re-infection (SEIRRS4) and uses a flexible Von Mises function to model the seasonal forcing. Using MCMC we fit the model to laboratory confirmed RSV data from 2010-2022 from NSW while accounting for the reduced contact rates during the pandemic with Google mobility data. We estimated the baseline transmission rate, its amplitude and shape during RSV season as well as the duration of immunity. The resulting parameter estimates were compared to a fit to pre-pandemic data only, and to a fit with a cosine forcing function. We then simulated the expected shifts in peak timing and amplitude under two vaccination strategies: continuous and seasonal vaccination.ResultsWe estimate that RSV dynamics in NSW can be best explained by a high effective baseline transmission rate (2.94/d, 95% CrI 2.72-3.19) and a narrow peak with a maximum 13% increase compared to the baseline transmission rate. We also estimate the duration of post infection temporary but sterilizing immunity to be 412 days (95% CrI 391-434). A cosine forcing resulted in a similar fit and posterior estimates. Excluding the data from the pandemic period in the fit increased parameter correlation and yielded less informative posterior distributions. The continuous vaccination strategy led to more extreme seasonal incidence with a delay in the peak timing and a higher amplitude whereas seasonal vaccination flattened the incidence curves.ConclusionQuantifying the parameters that govern RSV seasonality is key in determining potential indirect effects from immunization strategies as those are being rolled out in the next few years.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3