Abstract
ABSTRACTPlasmonic absorption of light can create significant local heat and has become a promising tool for rapid temperature regulation in diverse fields, from biomedical technology to optoelectronics. Current plasmonic heating usually relies on specially designed nanomaterials randomly distributed in the space and hardly provides uniform temperature regulation in a wide field. Herein we report a rapid temperature regulation strategy on a plain gold-coated glass slip using the plasmonic scattering microscopy, which can be referred to as wide-field plasmonic thermal microscopy (W-PTM). We calibrated the W-PTM by monitoring the phase transition of the temperature-sensitive polymer solutions, showing that it can provide a temperature regulation range of 33-80 °C. Moreover, the W-PTM provides imaging capability, thus allowing the statistical analysis of the phase-transitioned polymeric nanoparticles. Finally, we demonstrated that W-PTM can be used for noninvasive and local regulation of the transient receptor potential vanilloid 1 (TRPV1) ion channels in the living cells, which can be monitored by simultaneous fluorescence imaging of calcium influx. With the nondestructive local temperature-regulating and concurrent fluorescence imaging capability, we anticipate that W-PTM can be a powerful tool to study cellular activities associated with cellular membrane temperature changes.
Publisher
Cold Spring Harbor Laboratory