Abstract
AbstractThe concept of cumulative impacts is widespread in policy documents, regulations, and ecological studies, but quantification methods are still evolving. Infrastructure development usually takes place in landscapes with preexisting anthropogenic features. Typically, their impact is determined by computing the distance to the nearest feature only, thus ignoring the potential cumulative impacts of multiple features. We propose thecumulative ZOI approachto assess whether and to what extent anthropogenic features lead to cumulative impacts.The approach estimates both effect size and zone of influence (ZOI) of anthropogenic features and allows for estimation of cumulative effects of multiple features distributed in the landscape. First, we use simulations and an empirical study to understand under which circumstances cumulative impacts arise. Second, we demonstrate the approach by estimating the cumulative impacts of tourist infrastructure in Norway on the habitat of wild reindeer (Rangifer t. tarandus), a nearly-threatened species highly sensitive to anthropogenic disturbance.Simulations show that analyses based on the nearest feature and our cumulative approach are indistinguishable in two extreme cases: when features are few and scattered and their ZOI is small, and when features are clustered and their ZOI is large. Empirical analyses revealed cumulative impacts of private cabins and tourist resorts on reindeer, extending up to 10 and 20 km, with different decaying functions. Although the impact of an isolated private cabin was negligible, the cumulative impact of ‘cabin villages’ could be much larger than that of a single large tourist resort. Focusing on the nearest feature only underestimates the impact of ‘cabin villages’ on reindeer.The suggested approach allows us to quantify the magnitude and spatial extent of cumulative impacts of point, linear, and polygon features in a computationally efficient and flexible way and is implemented in theoneimpactR package. The formal framework offers the possibility to avoid widespread underestimations of anthropogenic impacts in ecological and impact assessment studies and can be applied to a wide range of spatial response variables, including habitat selection, population abundance, species richness and diversity, community dynamics, and other ecological processes.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献