Chromosome level reference genome for European flat oyster (Ostrea edulis L.)

Author:

Gundappa Manu KumarORCID,Peñaloza Carolina,Regan TimORCID,Boutet IsabelleORCID,Tanguy ArnaudORCID,Houston Ross D.ORCID,Bean Tim P.ORCID,Macqueen Daniel J.ORCID

Abstract

AbstractThe European flat oyster (Ostrea edulis L.) is a bivalve naturally distributed across Europe that was an integral part of human diets for centuries, until anthropogenic activities and disease outbreaks severely reduced wild populations. Despite a growing interest in genetic applications to support population management and aquaculture, a reference genome for this species is lacking to date. Here we report a chromosome-level assembly and annotation for the European Flat oyster genome, generated using Oxford Nanopore, Illumina, Dovetail OmniC™ proximity ligation and RNA sequencing. A contig assembly (N50: 2.38Mb) was scaffolded into the expected karyotype of 10 pseudo-chromosomes. The final assembly is 935.13 Mb, with a scaffold-N50 of 95.56 Mb, with a predicted repeat landscape dominated by unclassified elements specific to O. edulis. The assembly was verified for accuracy and completeness using multiple approaches, including a novel linkage map built with ddRAD-Seq technology, comprising 4,016 SNPs from four full-sib families (8 parents and 163 F1 offspring). Annotation of the genome integrating multi-tissue transcriptome data, comparative protein evidence and ab-initio gene prediction identified 35,699 protein-coding genes. Chromosome level synteny was demonstrated against multiple high-quality bivalve genome assemblies, including an O. edulis genome generated independently for a French O. edulis individual. Comparative genomics was used to characterize gene family expansions during Ostrea evolution that potentially facilitated adaptation. This new reference genome for European flat oyster will enable high-resolution genomics in support of conservation and aquaculture initiatives, and improves our understanding of bivalve genome evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3