Stretchable mesh microelectronics for the biointegration and stimulation of neural organoids

Author:

Li Thomas L.ORCID,Liu Yuxin,Forro Csaba,Beker LeventORCID,Bao ZhenanORCID,Cui BianxiaoORCID,Paşca Sergiu P.ORCID

Abstract

Advances in tridimensional (3D) culture approaches have led to the generation of organoids that recapitulate cellular and physiological features of domains of the human nervous system. Although microelectrodes have been developed for long-term electrophysiological interfaces with neural tissue, studies of long-term interfaces between microelectrodes and free-floating organoids remain limited. In this study, we report a stretchable, soft mesh electrode system that establishes an intimate in vitro electrical interface with human neurons in 3D organoids. Our mesh is constructed with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based electrically conductive hydrogel electrode arrays and an elastomeric poly(styrene-ethylene-butadiene-styrene) (SEBS) as the substrate and encapsulation materials. This mesh electrode can maintain stable electrochemical impedance in buffer solution under 50% compressive and 50% tensile strain. We have successfully cultured pluripotent stem cell-derived human cortical organoids (hCO) on this polymeric mesh for more than 3 months and demonstrated that organoids readily integrate with the mesh. Using simultaneous stimulation and calcium imaging, we show that electrical stimulation through the mesh can elicit intensity-dependent calcium signals comparable to stimulation from a bipolar stereotrode. This platform may serve as a tool for monitoring and modulating the electrical activity of in vitro models of neuropsychiatric diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3