Aging and sperm signals alter DNA break formation and repair in the C. elegans germline

Author:

Toraason Erik,Adler Victoria L.ORCID,Libuda Diana E.ORCID

Abstract

AbstractFemale reproductive aging is associated with decreased oocyte quality and fertility. The nematode Caenorhabditis elegans is a powerful system for understanding the biology of aging and exhibits age-related reproductive defects that are analogous to those observed in many mammals, including dysregulation of DNA repair. C. elegans germline function is influenced simultaneously by both reproductive aging and signals triggered by limited supplies of sperm, which are depleted over chronological time. To delineate the causes of DNA repair defects in aged C. elegans germlines, we assessed both DNA double strand break (DSB) induction and repair during meiotic prophase progression in aged germlines which were depleted of self-sperm, mated, or never exposed to sperm. We find that germline DSB induction is dramatically reduced only in hermaphrodites which have exhausted their endogenous sperm, suggesting that a signal due specifically to sperm depletion downregulates DSB formation. We also find that DSB repair is delayed in aged germlines regardless of whether hermaphrodites had either a reduction in sperm supply or an inability to endogenously produce sperm. These results demonstrate that in contrast to DSB induction, DSB repair defects are a feature of C. elegans reproductive aging independent of sperm presence. Finally, we demonstrate that the ubiquitin E2 ligase variant UEV-2 is required for efficient DSB repair specifically in young germlines, implicating UEV-2 in the regulation of DNA repair during reproductive aging. In summary, our study demonstrates that DNA repair defects are a feature of C. elegans reproductive aging and uncovers parallel mechanisms regulating efficient DSB formation in the germline.Author SummaryAging leads to a decline in the quality of the female reproductive cells, known as oocytes. Oocytes subjected to reproductive aging experience an increase in both infertility and aneuploidies that cause miscarriages and birth defects. The nematode Caenorhabditis elegans is a classic model system used to determine the mechanisms of aging. Old C. elegans oocytes accrue many defects which may contribute to their reduced quality, including dysregulation of DNA repair. C. elegans fertility and germline function is also regulated oocyte-independently by sperm-dependent signals. To determine how aging and sperm may independently impact DNA repair in aging C. elegans oocytes, we control oocyte aging and sperm presence independently to evaluate their effects on DNA break formation and repair. We find that running out of sperm reduces the levels of DNA breaks which are produced, but the efficiency of DNA repair declines during aging independent of sperm effects. We also identify a protein which specifically promotes DNA repair in the oocytes of young animals, suggesting that this protein may regulate DNA repair in the germline during aging. Taken together, our research defines aging-specific and aging-independent mechanisms which regulate the genome integrity of oocytes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3