Genomic expression responses in sensu stricto Saccharomyces yeast to DNA damage induced by methyl methanesulfonate

Author:

Ramachandran Vignesh,Hatlestad Gregory,White Travis

Abstract

AbstractBackgroundOne way single-celled eukaryotes respond to DNA damage stress is by modifying their gene expression, facilitating genomic repair. Gene expression responses to DNA damage induced by methyl methanesulfonate (MMS) have been studied in the model organism Saccharomyces cerevisiae. However, lacking are investigations of the MMS stress responses in evolutionarily-related sensu stricto Saccharomyces species, including Saccharomyces cerevisiae.MethodsNext-generation Illumina RNA-sequencing was to characterize the entire transcriptomes of four evolutionarily-related species of yeast, S. cerevisiae, S. paradoxus, S. mikatae, and S. bayanus, under control and experimental (MMS) conditions. Subsequent genomic studies included gene set enrichment analysis, promoter analysis, and concentration gradient studies.ResultsS. mikitae and S. paradoxus grew well in light of MMS while S. bayanus showed no growth. While there was fair overlap in induced and repressed genes, overall each species had unique expression responses. S. paradoxus and S. bayanus showed the most distinct changes with the former greatly inhibiting a large segment of its genome while the latter induced such segments. Gene set enrichment analysis revealed significantly modulated biologic, cellular, and molecular processes in each species. Promoter analysis revealed sets of induced/repressed transcription factors for genes highly modulated in the stress response. Concentration gradient studies of S. cerevisiae showed linear increase in gene expression of RAD54, DIN7, and IRC19 in response to increasing concentrations of MMS.ConclusionOverall, we depict the transcriptome changes of four evolutionarily-related sensu stricto yeast species and several functional genomic analyses to provide a novel understanding of their responses to MMS.

Publisher

Cold Spring Harbor Laboratory

Reference27 articles.

1. http://science.sciencemag.org/content/281/5383/1674

2. Stress-induced transcriptional activation;Microbiol Rev,1995

3. Stress signaling in yeast

4. https://www.ncbi.nlm.nih.gov/pubmed/11102521

5. https://www.ncbi.nlm.nih.gov/pubmed/7997877

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3