Analytical approaches for antimalarial antibody responses to confirm historical and recent malaria transmission: an example from the Philippines

Author:

Macalinao Maria Lourdes M.ORCID,Fornace Kimberly M.ORCID,Reyes Ralph A.ORCID,Bareng Alison Paolo N.,Hall TomORCID,Adams John H.ORCID,Huon Christèle,Chitnis Chetan E.ORCID,Luchavez Jennifer S.,Tetteh Kevin K. A.,Yui KatsuyukiORCID,Hafalla Julius Clemence R.ORCID,Espino Fe Esperanza J.ORCID,Drakeley Chris J.ORCID

Abstract

AbstractBackgroundAssessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure.MethodsHere, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific antibody response data to classify recent and historical exposure toPlasmodium falciparumandP. vivax. To assess these methods, we utilized samples from a health-facility based survey (n=9132) in the Philippines, where we quantified antibody responses against 8P. falciparumand 6P. vivax-specific antigens from 3 sites with varying transmission intensity.FindingsMeasurements of antibody responses and seroprevalence were consistent with the 3 sites’ known endemicity status. For predictingP. falciparuminfection, a machine learning (ML) approach (Random Forest model) using 4 serological markers (PfGLURP R2, Etramp5.Ag1, GEXP18 and PfMSP119) gave better predictions for cases in Palawan (AUC: 0·9591, CI 0·9497-0·9684) than individual antigen seropositivity. Although the ML approach did not improveP. vivaxinfection predictions, ML classifications confirmed the absence of recent exposure toP. falciparumandP. vivaxin both Occidental Mindoro and Bataan. For predicting historicalP. falciparumandP. vivaxtransmission, seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119showed reliable trends in the 3 sites.InterpretationOur study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national elimination setting, and also highlights the potential use of machine learning models using multiplex antibody responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines.FundingNewton Fund, Philippine Council for Health Research and Development, and UK Medical Research Council.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. World Health Organization. Progress towards subnational elimination in the Philippines. Geneva PP - Geneva: World Health Organization, 2014 https://apps.who.int/iris/handle/10665/149678.

2. World Health Organization. World Malaria Report 2019. Geneva, Switzerland, 2019 https://www.who.int/publications-detail/world-malaria-report-2019.

3. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure

4. malERA: An updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication

5. World Health Organization, Global Malaria Programme. A Framework for Malaria Elimination. 2017 DOI:Licence: CC BY-NC-SA 3.0 IGO.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3