Neuro-mesodermal assembloids recapitulate aspects of peripheral nervous system developmentin vitro

Author:

Rockel Anna F.,Wagner Nicole,Ergün Süleyman,Wörsdörfer Philipp

Abstract

AbstractHere we describe a novel neuro-mesodermal assembloid model which recapitulates aspects of peripheral nervous system (PNS) development such as neural crest cell (NCC) induction, delamination, migration and sensory as well as sympathetic ganglion formation. The ganglia send neuronal projections to the mesodermal as well as the neural compartment. Axons in the mesodermal part are associated with Schwann cells. In addition, peripheral ganglia as well as nerve fibers interact with the co-developing vascular plexus, forming a neurovascular niche. Finally, developing sensory ganglia show response to capsaicin treatment indicating their functionality.The presented assembloid model could help to uncover mechanisms of NCC delamination, migration and PNS development in the human tissue context. Moreover, the model could be used for toxicity screenings or drug testing. The co-development of mesodermal and neuroectodermal tissues and of a well-organized vascular plexus along with a peripheral nervous system allows to investigate the crosstalk between neuroectoderm and mesoderm and between peripheral neurons/neuroblasts and endothelial cells. Such interactions influence NCC delamination and migration, sensory neuron differentiation and rearrangement of the primitive vascular plexus in the embryo.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional bioengineered models of the central nervous system;Nature Reviews Bioengineering;2023-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3