Evaluating a Human/Machine Interface with Redundant Motor Modalities for Trajectory-Tracking

Author:

Chou Amber H.Y.ORCID,Yamagami Momona,Burden Samuel A.ORCID

Abstract

AbstractIn human/machine interfaces (HMI), humans can interact with dynamic machines through a variety of sensory and motor modalities. Redundant motor modalities are known to have advantages in both human sensorimotor control and human-computer interaction: motor redundancy in sensorimotor control provides abundant solutions to achieve tasks; and incorporating diverse features from different modalities has improved the performance of movement-, gesture-, and brain-controlled computer interfaces. Our objective is to investigate whether redundant motor modalities enhance performance for a continuous trajectory-tracking task. We designed a multimodal human/machine interface with combined manual (joystick) and muscle (surface electromyography, sEMG) inputs and evaluated its closed-loop performance for tracking trajectories through second-order machine dynamics. In a human subjects experiment with 15 participants, we found that the multimodal interface outperformed the manual-only interface while performing comparably to the muscle-only interface; and that the multimodal interface enabled users to coordinate individual modalities to attenuate noise. Multimodal human/machine interfaces could be beneficial in systems that require stability and robustness against perturbations such as motor rehabilitation and robotic manipulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3