KSHV lytic mRNA is efficiently translated in the absence of eIF4F

Author:

Pringle Eric S.ORCID,Robinson Carolyn-Ann,Crapoulet Nicolas,Monjo Andrea L-A.,Bouzanis Katrina,Leidal Andrew M.ORCID,Lewis Stephen M.,Gaston DanielORCID,Uniacke JamesORCID,McCormick CraigORCID

Abstract

ABSTRACTHerpesvirus genomes are decoded by host RNA polymerase II, generating messenger ribonucleic acids (mRNAs) that are post-transcriptionally modified and exported to the cytoplasm. These viral mRNAs have 5 ′ -m7GTP caps and poly(A) tails that should permit assembly of canonical eIF4F cap-binding complexes to initiate protein synthesis. However, we have shown that chemical disruption of eIF4F does not impede KSHV lytic replication, suggesting that alternative translation initiation mechanisms support viral protein synthesis. Here, using polysome profiling analysis, we confirmed that eIF4F disassembly did not affect the efficient translation of viral mRNAs during lytic replication, whereas a large fraction of host mRNAs remained eIF4F-dependent. Lytic replication altered multiple host translation initiation factors (TIFs), causing caspase-dependent cleavage of eIF2α and eIF4G1 and decreasing levels of eIF4G2 and eIF4G3. Non-eIF4F TIFs NCBP1, eIF4E2 and eIF4G2 associated with actively translating messenger ribonucleoprotein (mRNP) complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production, suggesting that the virus does not exclusively rely on one of these alternative TIFs for efficient viral protein synthesis. METTL3, an N6-methyladenosine (m6A) methyltransferase that modifies mRNAs and influences translational efficiency, was dispensable for early viral gene expression and genome replication but required for late gene expression and virion production. METTL3 was also subject to caspase-dependent degradation during lytic replication, suggesting that its positive effect on KSHV late gene expression may be indirect. Taken together, our findings reveal extensive remodelling of TIFs during lytic replication, which may help sustain efficient viral protein synthesis in the context of host shutoff.IMPORTANCEViruses use host cell protein synthesis machinery to create viral proteins. Herpesviruses have evolved a variety of ways to gain control over this host machinery to ensure priority synthesis of viral proteins and diminished synthesis of host proteins with antiviral properties. We have shown that a herpesvirus called KSHV disrupts normal cellular control of protein synthesis. A host cell protein complex called eIF4F starts translation of most cellular mRNAs, but we observed it is dispensable for efficient synthesis of viral proteins. Several proteins involved in alternative modes of translation initiation were likewise dispensable. However, an enzyme called METTL3 that modifies mRNAs is required for efficient synthesis of certain late KSHV proteins and productive infection. We observed caspase-dependent degradation of several host cell translation initiation proteins during infection, suggesting that the virus alters pools of available factors to favour efficient viral protein synthesis at the expense of host protein synthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3