Inferring Cancer Progression from Single-cell Sequencing while Allowing Mutation Losses
Author:
Ciccolella Simone, Gomez Mauricio Soto, Patterson MurrayORCID, Vedova Gianluca DellaORCID, Hajirasouliha Iman, Bonizzoni Paola
Abstract
AbstractMotivationIn recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions seen as an accumulation of mutations. However, recent studies (Kuiperset al., 2017) leveraging Single-cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. Still, established methods that can infer phylogenies with mutation losses are however lacking.ResultsWe present theSASC(Simulated Annealing Single-Cell inference) tool which is a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data. More precisely, we introduce a simple extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of back mutations in the evolutionary history of the tumor: the Dollo-kmodel. We demonstrate thatSASCachieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods.AvailabilityThe Simulated Annealing Single-cell inference (SASC) tool is open source and available athttps://github.com/sciccolella/sasc.Contacts.ciccolella@campus.unimib.it
Publisher
Cold Spring Harbor Laboratory
Reference33 articles.
1. Bonizzoni, P. , Carrieri, A. , Della Vedova, G. , R., R., and Trucco, G. (2016). A colored graph approach to perfect phylogeny with persistent characters. Theoretical Computer Science. 2. Bonizzoni, P. , Ciccolella, S. , Della Vedova, G. , and Soto, M. (2017). Beyond perfect phylogeny: Multisample phylogeny reconstruction via ilp. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM-BCB ’17, pages 1–10, New York, NY, USA. ACM. 3. Brown, D. , Smeets, D. , Székely, B. , Larsimont, D. , Szász, A. M. , Adnet, P.-Y. , Rothé, F. , Rouas, G. , Nagy, Z. I. , Faragó, Z. , Tokés, A.-M. , Dank, M. , Szentmártoni, G. , Udvarhelyi, N. , Zoppoli, G. , Pusztai, L. , Piccart, M. , Kulka, J. , Lambrechts, D. , Sotiriou, C. , and Desmedt, C. (2017). Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nature Communications, 8, 14944 EP –. 4. Chung, W. , Eum, H. H. , Lee, H.-O. , Lee, K.-M. , Lee, H.-B. , Kim, K.-T. , Ryu, H. S. , Kim, S. , Lee, J. E. , Park, Y. H. , Kan, Z. , Han, W. , and Park, W.-Y. (2017). Single-cell rna-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications, 8, 15081 EP –. Article. 5. The computational complexity of inferring rooted phylogenies by parsimony
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|