Inferring Cancer Progression from Single-cell Sequencing while Allowing Mutation Losses

Author:

Ciccolella Simone,Gomez Mauricio Soto,Patterson MurrayORCID,Vedova Gianluca DellaORCID,Hajirasouliha Iman,Bonizzoni Paola

Abstract

AbstractMotivationIn recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions seen as an accumulation of mutations. However, recent studies (Kuiperset al., 2017) leveraging Single-cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. Still, established methods that can infer phylogenies with mutation losses are however lacking.ResultsWe present theSASC(Simulated Annealing Single-Cell inference) tool which is a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data. More precisely, we introduce a simple extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of back mutations in the evolutionary history of the tumor: the Dollo-kmodel. We demonstrate thatSASCachieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods.AvailabilityThe Simulated Annealing Single-cell inference (SASC) tool is open source and available athttps://github.com/sciccolella/sasc.Contacts.ciccolella@campus.unimib.it

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. Bonizzoni, P. , Carrieri, A. , Della Vedova, G. , R., R., and Trucco, G. (2016). A colored graph approach to perfect phylogeny with persistent characters. Theoretical Computer Science.

2. Bonizzoni, P. , Ciccolella, S. , Della Vedova, G. , and Soto, M. (2017). Beyond perfect phylogeny: Multisample phylogeny reconstruction via ilp. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM-BCB ’17, pages 1–10, New York, NY, USA. ACM.

3. Brown, D. , Smeets, D. , Székely, B. , Larsimont, D. , Szász, A. M. , Adnet, P.-Y. , Rothé, F. , Rouas, G. , Nagy, Z. I. , Faragó, Z. , Tokés, A.-M. , Dank, M. , Szentmártoni, G. , Udvarhelyi, N. , Zoppoli, G. , Pusztai, L. , Piccart, M. , Kulka, J. , Lambrechts, D. , Sotiriou, C. , and Desmedt, C. (2017). Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nature Communications, 8, 14944 EP –.

4. Chung, W. , Eum, H. H. , Lee, H.-O. , Lee, K.-M. , Lee, H.-B. , Kim, K.-T. , Ryu, H. S. , Kim, S. , Lee, J. E. , Park, Y. H. , Kan, Z. , Han, W. , and Park, W.-Y. (2017). Single-cell rna-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications, 8, 15081 EP –. Article.

5. The computational complexity of inferring rooted phylogenies by parsimony

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3