CLASP mediates microtubule repair by promoting tubulin incorporation into damaged lattices

Author:

Aher Amol,Rai Dipti,Schaedel Laura,Gaillard Jeremie,John Karin,Blanchoin Laurent,Thery Manuel,Akhmanova AnnaORCID

Abstract

SummaryMicrotubule network plays a key role in cell division, motility and intracellular trafficking. Microtubule lattices are generally regarded as stable structures that undergo turnover through dynamic instability of their ends [1]. However, recent evidence suggests that microtubules also exchange tubulin dimers at the sites of lattice defects, which can either be induced by mechanical stress or occur spontaneously during polymerization [2–4]. Tubulin incorporation can restore microtubule integrity; moreover, “islands” of freshly incorporated GTP-tubulin can inhibit microtubule disassembly and promote rescues [3–7]. Microtubule repair occurs in vitro in the presence of tubulin alone [2–4, 8]. However, in cells, it is likely to be regulated by specific factors, the nature of which is currently unknown. CLASP is an interesting candidate for microtubule repair, because it induces microtubule nucleation, stimulates rescue and suppresses catastrophes by stabilizing incomplete growing plus ends with lagging protofilaments and promoting their conversion into complete ones [9–16]. Here, we used in vitro reconstitution assays combined with laser microsurgery and microfluidics to show that CLASP2α indeed stimulates microtubule lattice repair. CLASP2α promoted tubulin incorporation into damaged lattice sites thereby restoring microtubule integrity. Furthermore, it induced the formation of complete tubes from partial protofilament assemblies and inhibited microtubule softening caused by hydrodynamic flow-induced bending. A single CLASP2α domain, TOG2, which suppresses catastrophes when tethered to microtubules, was sufficient to stimulate microtubule repair, indicating that catastrophe suppression and lattice repair are mechanistically similar. Our results suggest that the cellular machinery controlling microtubule nucleation and growth can also help to maintain microtubule integrity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The lifecycle of the neuronal microtubule transport machinery;Seminars in Cell & Developmental Biology;2020-11

2. CLASPs at a glance;Journal of Cell Science;2020-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3