Abstract
AbstractMicrotubules are nucleated from specific locations at precise times in the cell cycle. However, the factors that constitute these microtubule nucleation pathways still need to be identified along with their mode of action. Here, using purified Xenopus laevis proteins we biochemically reconstitute branching microtubule nucleation, a nucleation pathway where microtubules originate from pre-existing microtubules, which is essential for spindle assembly and chromosome segregation. We found that besides the microtubule nucleator gamma-tubulin ring complex (γ-TuRC), the two branching effectors augmin and TPX2 are required to efficiently nucleate branched microtubules. Specifically, TPX2 generates regularly-spaced patches that recruit augmin and γ-TuRC to microtubules, which then nucleate new microtubules at preferred branching angles of less than 90 degrees. Our work demonstrates how γ-TuRC is brought to its nucleation site for branching microtubule nucleation. It provides a blueprint for other microtubule nucleation pathways and for generating a particular microtubule architecture by regulating microtubule nucleation.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献