Abstract
ABSTRACTOuter membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secreted extracellular vesicles (EVs) was not pursued due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteriaare implicated in virulence, toxin release and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that is the etiological agent of listeriosis. Here we report that L. monocytogenes produces EVs with diameter ranging from 20-200 nm, containing the pore-forming toxin listeriolysin O(LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multi-omics we characterized protein, lipid and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Cell-free EV preparations were toxic to the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC can restrain LLO activity. Using immunogold electron microscopy we detect LLO localization at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes that colocalize with LLO during infection. Our findings demonstrate that L. monocytogenes utilize EVs for toxin release and implicate these structures in mammalian cytotoxicity.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献