Cis and trans-acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides

Author:

Green LlewellynORCID,Battlay PaulORCID,Fournier-Level AlexandreORCID,Good Robert T.,Robin CharlesORCID

Abstract

AbstractInsecticide resistance is a paradigm of microevolution and insecticides are responsible for the strongest cases of recent selection in the genome of Drosophila melanogaster. Here we use a naïve population and a novel insecticide class to examine the ab initio genetic architecture of a potential selective response. Genome wide association studies of chlorantraniliprole susceptibility reveal variation in a gene of major effect, Stretchin Myosin light chain kinase (Strn-Mlck), which we validate with linkage mapping and transgenic manipulation of gene expression. We propose that allelic variation in Strn-Mlck alters sensitivity to the calcium depletion attributable to chlorantraniliprole’s mode of action. Genome-wide association studies also reveal a network of genes involved in neuromuscular biology. In contrast, phenotype to transcriptome associations identify differences in constitutive levels of multiple transcripts regulated by cnc, the homologue of mammalian Nrf2. This suggests that genetic variation acts in trans to regulate multiple metabolic enzymes in this pathway. The most outstanding association is with the transcription level of Cyp12d1 which is also affected in cis by copy number variation. Transgenic overexpression of Cyp12d1 reduces susceptibility to both chlorantraniliprole and the closely related insecticide cyantraniliprole. This systems genetics study reveals multiple allelic variants segregating at intermediate frequency in a population that is completely naïve to this new insecticide chemistry and it adumbrates a selective response among natural populations to these chemicals.SignificanceAround the world insecticides are being deregistered and banned, as their environmental costs are deemed too great or their efficacy against pest insects is reduced through the evolution of insecticide resistance. With the introduction of replacement insecticides comes the responsibility to assess the way new insecticides perturb various levels of biological systems; from insect physiology to ecosystems. We used a systems genetics approach to identify genetic variants affecting survivorship of Drosophila melanogaster exposed to chlorantraniliprole. The study population was completely naïve to this insecticide chemistry and yet we find associations with variants in neuromuscular genes and co-regulated detoxification genes. We predict that these variants will increase in populations of this ‘sentinel species’ as these insecticides are applied in the environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3