New transcriptional circuit evolved by coding sequence changes in a master regulator followed by cis-regulatory changes in its target genes

Author:

Britton Candace S.,Sorrells Trevor R.,Johnson Alexander D.

Abstract

AbstractWhile changes in both the coding-sequence of transcriptional regulators and in the cis-regulatory sequences recognized by them have been implicated in the evolution of transcriptional circuits, little is known of how they evolve in concert. We describe an evolutionary pathway in fungi where a new transcriptional circuit (a-specific gene repression by Matα2) evolved by coding changes in an ancient master regulator, followed millions of years later by cis-regulatory sequence changes in the genes of its future regulon. We discerned this order of events by analyzing a group of species in which the coding changes in the regulator are present, but the cis-regulatory changes in the target genes are not. In this group we show that the coding changes became necessary for the regulator’s deeply conserved function and were therefore preserved. We propose that the changes first arose without altering the overall function of the regulator (although changing the details of its mechanism) and were later co-opted to “jump start” the formation of the new circuit.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3