Impacts of intraspecific variability and local adaptation on the ecophysiology of mosses: an example with Sphagnum magellanicum

Author:

Oke Tobi A.,Turetsky Merritt R.,Weston David J.,Shaw A. Jonathan

Abstract

AbstractBackgroundBryophytes are a diverse plant group and are functionally different from vascular plants. Yet, plant ecology theories and hypotheses are often presented in an inclusive term. The trait-based approach to ecology is no exception; largely focusing on vascular plant traits and almost exclusively on interspecific traits. Currently, we lack information about the magnitude and the importance of intraspecific variability to the ecophysiology of bryophytes and how these might translate to local adaptation—a prerequisite for adaptive evolution.MethodWe used transplant and factorial experiments involving moisture and light to ask whether variability in traits between morphologically distinct individuals of Sphagnum magellanicum from habitat extremes was due to phenotypic plasticity or local adaptation and the implications for the ecophysiology of the species.Key ResultsWe found that the factors that discriminated between the plant origins in the field did not translate to their ecophysiological functioning and the pattern of variability changed with the treatments, which suggests that the trait responses were due largely to phenotypic plasticity. The trait responses suggest that the need for mosses to grow in clumps where they maintain a uniform growth rate may have an overriding effect on responses to environmental heterogeneity, and therefore a constraint for local adaptation.ConclusionThe circumstances under which local adaptation would be beneficial in this plant group is not clear. We conclude that extending the trait-based framework to mosses or making comparisons between mosses and vascular plants under any theoretical framework would only be meaningful to the extent that growth form and dispersal strategies are considered.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3