A low-cost DIY device for high resolution, continuous measurement of microbial growth dynamics

Author:

Sasidharan Kalesh,Martinez-Vernon Andrea S.,Chen Jing,Fu Tiantian,Soyer Orkun S

Abstract

ABSTRACTHigh-resolution data on microbial growth dynamics allow characterisation of microbial physiology, as well as optimisation of genetic alterations thereof. Such data are routinely collected using bench-top spectrophotometers or so-called plate readers. These equipments present several drawbacks: (i) measurements from different devices cannot be compared directly, (ii) proprietary nature of devices makes it difficult for standardisation methods to be developed across devices, and (iii) high costs limit access to devices, which can become a bottleneck for researchers, especially for those working with anaerobic organisms or at higher containment level laboratories. These limitations could be lifted, and data reproducibility improved, if the scientific community could adopt standardised, low-cost and open-source devices that can be built in-house. Here, we present such a device, MicrobeMeter, which is a do-it-yourself (DIY), simple, yet robust photometer with continuous data-logging capability. It is built using 3D-printing and open-source Arduino platform, combined with purpose-built electronic circuits. We show that MicrobeMeter displays linear relation between culture density and turbidity measurement for microbes from different phylogenetic domains. In addition, culture density estimated from MicrobeMeter measurements produced less variance compared against three commercial bench-top spectrophotometers, indicating that its measurements are less affected by the differences in cell types. We show the utility of MicrobeMeter, as a programmable wireless continuous measurement device, by collecting long-term growth dynamics up to 458 hours from aerobic and anaerobic cultures. We provide a full open-source description of MicrobeMeter and its implementation for faster adaptation and future development by the scientific community. The blueprints of the device, as well as ready-to-assemble kit versions are also made available throughwww.humanetechnologies.co.uk.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3