Identification of 12 genetic loci associated with human healthspan

Author:

Zenin Aleksandr,Tsepilov Yakov,Sharapov Sodbo,Getmantsev Evgeny,Menshikov L. I.,Fedichev Peter O.,Aulchenko Yurii

Abstract

The mounting challenge of preserving the quality of life in an aging population directs the focus of longevity science to the regulatory pathways controlling healthspan. To understand the nature of the relationship between the healthspan and lifespan and uncover the genetic architecture of the two phenotypes, we studied the incidence of major age-related diseases in the UK Biobank (UKB) cohort. We observed that the incidence rates of major chronic diseases increase exponentially. The risk of disease acquisition doubled approximately every eight years, i.e., at a rate compatible with the doubling time of the Gompertz mortality law. Assuming that aging is the single underlying factor behind the morbidity rates dynamics, we built a proportional hazards model to predict the risks of the diseases and therefore the age corresponding to the end of healthspan of an individual depending on their age, gender, and the genetic background. We suggested a computationally efficient procedure for the determination of the effect size and statistical significance of individual gene variants associations with healthspan in a form suitable for a Genome-Wide Association Studies (GWAS). Using the UKB sub-population of 300,447 genetically Caucasian, British individuals as a discovery cohort, we identified 12 loci associated with healthspan and reaching the whole-genome level of significance. We observed strong (|ρg| > 0.3) genetic correlations between healthspan and the incidence of specific age-related disease present in our healthspan definition (with the notable exception of dementia). Other examples included all-cause mortality (as derived from parental survival, with ρg = −0.76), life-history traits (metrics of obesity, age at first birth), levels of different metabolites (lipids, amino acids, glycemic traits), and psychological traits (smoking behaviour, cognitive performance, depressive symptoms, insomnia). We conclude by noting that the healthspan phenotype, suggested and characterized here, offers a promising new way to investigate human longevity by exploiting the data from genetic and clinical data on living individuals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3