Lysyl oxidase promotes neuronal ferroptosis exacerbating seizure-induced hippocampal damage

Author:

Mao Xiao-Yuan,Jin Ming-Zhu,Li Qin,Jia Ji-Ning,Sun Qian-Yi,Zhou Hong-Hao,Liu Zhao-Qian,Jin Wei-Lin

Abstract

AbstractEpilepsy is a serious neurological disorder and characterized by recurrent and unprovoked seizures. A critical pathological factor in the seizure genesis is neuronal loss. However, mechanisms which lead to neuronal death remain elusive. Our present investigation depicted that ferroptosis, a recently discovered iron- and lipid peroxidation-dependent cell death, probably served as a mechanism in murine models of kainic acid (KA)-induced seizures. And treatment with ferroptosis inhibitors ferrostatin-1 (Fer-1), liproxstatin-1 (Lipo-1) or deferoxamine (DFO) significantly suppressed seizure severity and frequency. Using gene expression profiling in HT22 cells after glutamate exposure (a validated ferroptotic cell death model), we identified lysyl oxidase (Lox) as a novel inducer of ferroptosis. Mechanistically, Lox promoted ferroptosis via activation of extracellular regulated protein kinase (ERK)-dependent 5-lipoxygenase (Alox5) phosphorylation at serine 663 residue signaling, subsequent leading to lipid reactive oxygen species (ROS) accumulation. In a murine model of KA-induced seizure, we illustrated that administration of β-aminopropionitrile (BAPN), a specific Lox inhibitor, remarkably prevented seizure generation. Overall, these findings highlight Lox, a novel identified ferroptotic regulator in neurons, serves as a potential target for seizure-related disease including epilepsy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeting ferroptosis in ischemia/reperfusion renal injury;Naunyn-Schmiedeberg's Archives of Pharmacology;2022-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3