Exploring Disturbance as a Force for Good in Motor Learning

Author:

Brookes JackORCID,Mushtaq Faisal,Jamieson Earle,Fath Aaron J.,Bingham Geoffrey P.,Culmer Peter,Wilkie Richard M.,Mon-Williams Mark A.

Abstract

AbstractDisturbance forces facilitate motor learning, but theoretical explanations for this counterintuitive phenomenon are lacking. Smooth arm movements require predictions (inference) about the force-field associated with a workspace. The Free Energy Principle (FEP) suggests that such ‘active inference’ is driven by ‘surprise’. We used these insights to create a formal model that explains why disturbance helps learning. In two experiments, participants undertook a continuous tracking task where they learned how to move their arm in different directions through a novel 3D force field. We compared baseline performance before and after exposure to the novel field to quantify learning. In Experiment 1, the exposure phases (but not the baseline measures) were delivered under three different conditions: (i) robot haptic assistance; (ii) no guidance; (iii) robot haptic disturbance. The disturbance group showed the best learning as our model predicted. Experiment 2 further tested our FEP inspired model. Assistive and/or disturbance forces were applied as a function of performance (low surprise), and compared to a random error manipulation (high surprise). The random group showed the most improvement as predicted by the model. Thus, motor learning can be conceptualised as a process of entropy reduction. Short term motor strategies (e.g. global impedance) can mitigate unexpected perturbations, but continuous movements require active inference about external force-fields in order to create accurate internal models of the external world (motor learning). Our findings reconcile research on the relationship between noise, variability, and motor learning, and show that information is the currency of motor learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3