Optogenetic suppression of the medial septum impairs working memory maintenance

Author:

Gemzik Zachary M.ORCID,Donahue Margaret M.,Griffin Amy L.

Abstract

Spatial working memory (SWM) is the ability to encode, maintain, and retrieve spatial information over a temporal gap, and relies on a network of structures including the medial septum (MS), which provides critical input to the hippocampus. Although the role of the MS in SWM is well-established, up until recently, we have been unable to use temporally precise circuit manipulation techniques to examine the specific role of the MS in SWM, particularly to distinguish between encoding, maintenance, and retrieval. Here, we test the hypothesis that the MS supports the maintenance of spatial information over a temporal gap using precisely timed optogenetic suppression delivered during specific portions of three different tasks, two of which rely on SWM and one that does not. In experiment 1, we found that MS optogenetic suppression impaired choice accuracy of a SWM dependent conditional discrimination task. Moreover, this deficit was only observed when MS suppression was delivered during the cue-sampling, but not the cue-retrieval, portion of the trial. There was also no deficit when MS neurons were optogenetically suppressed as rats performed a SWM-independent variant of the task. In experiment 2, we tested whether MS suppression affected choice accuracy on a delayed nonmatch to position (DNMP) task when suppression was limited to the sample, delay, and choice phases of the task. We found that MS suppression delivery during the delay phase of the DNMP task, but not during the sample or choice phases, impaired choice accuracy. Our results collectively suggest that the MS plays an important role in SWM by maintaining task-relevant information over a temporal delay.

Funder

National Institutes of Health

NIH-National Institute of General Medical Sciences

National Science Foundation

state of Delaware

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3