Unravelling the genomic basis and evolution of the pea aphid male wing dimorphism

Author:

Li Binshuang,Bickel Ryan D.,Parker Benjamin J.,Vellichirammal Neetha Nanoth,Grantham Mary,Simon Jean-Christophe,Stern David L.,Brisson Jennifer A.

Abstract

SummaryWing dimorphisms have long served as models for examining the ecological and evolutionary tradeoffs associated with alternative morphologies [1], yet the mechanistic basis of morph determination remains largely unknown. Here we investigate the genetic basis of the pea aphid (Acyrthosiphon pisum) wing dimorphism, wherein males exhibit one of two alternative morphologies that differ dramatically in a set of correlated traits that inclused the presence or absence of wings [2-4]. Unlike the environmentally-induced asexual female aphid wing polyphenism [5], the male wing polymorphism is genetically determined by a single uncharacterized locus on the X chromosome called aphicarus (“aphid” plus “Icarus”, api) [6, 7]. Using recombination and association mapping, we localized api to a 130kb region of the pea aphid genome. No nonsynonymous variation in coding sequences strongly associated with the winged and wingless phenotypes, indicating that api is likely a regulatory change. Gene expression level profiling revealed an aphid-specific gene from the region expressed at higher levels in winged male embryos, coinciding with the expected stage of api action. Comparison of the api region across biotypes (pea aphid populations specialized to different host plants that began diverging ~16,000 years ago [8, 9]) revealed that the two alleles were likely present prior to biotype diversification. Moreover, we find evidence for a recent selective sweep of a wingless allele since the biotypes diversified. In sum, this study provides insight into how adaptive, complex traits evolve within and across natural populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Mechanisms of Wing Polymorphism in Insects;Annual Review of Entomology;2019-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3