Generative adversarial network (GAN) enabled on-chip contact microscopy

Author:

Chen Xiongchao,Zhang Hao,Zhu Tingting,Yao Yao,Jin Di,Fei Peng

Abstract

We demonstrate a deep learning based contact imaging on a CMOS chip to achieve ∼1 μm spatial resolution over a large field of view of ∼24 mm2. By using regular LED illumination, we acquire the single lower-resolution image of the objects placed approximate to the sensor with unit fringe magnification. For the raw contact-mode lens-free image, the pixel size of the sensor chip limits the spatial resolution. We apply a generative and adversarial network (GAN), a type of deep learning algorithm, to circumvent this limitation and effectively recover much higher resolution image of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. This GAN-contact imaging approach eliminates the need of either lens or multi-frame acquisition, being very handy and cost-effective. We demonstrate the success of this approach by imaging the proliferation dynamics of cells directly cultured on the chip.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3