Full life-cycle models from ring-recovery data: estimating fecundity from age ratios at capture

Author:

Arnold Todd. W.ORCID

Abstract

AbstractTag-recovery data from organisms captured and marked post breeding are commonly used to estimate juvenile and adult survival. If annual fecundity could also be estimated, tagging studies such as European and North American bird-ringing schemes could provide all parameters needed for building full life-cycle projection models.I modified existing tag-recovery models to allow estimation of annual fecundity using age composition and recapture probabilities obtained during routine banding operations of northern pintails (Anas acuta) and dark-eyed juncos (Junco hyemalis), and I conducted simulations to assess estimator performance in relation to sample size.For pintails, population growth rate from band-recovery data (λ = 0.929, SD 0.060) was similar but less precise than count-based estimates from the Waterfowl Breeding Pair and Habitat Survey (λ 0.945, SE 0.001). Models with temporal variation in vital rates indicated that annual population growth in pintails was driven primarily by variation in fecundity. Juncos had lower survival but greater fecundity, and their estimated population growth rate (λ 1.01, SD 0.19) was consistent with count-based surveys (λ 0.986).Simulations indicated that reliable (CV < 0.10) estimates of fecundity could be obtained with >1000 same-season live encounters. Although precision of survival estimates depended primarily on numbers of adult recoveries, estimates of population growth rate were most sensitive to total number of live encounters.Synthesis and applications: Large-scale ring-recovery programmes could be used to estimate annual fecundity in many species of birds, but the approach requires better data curation, including accurate assessment of age, better reporting of banding totals and greater emphasis on obtaining and reporting same-season live encounters.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3