Abstract
AbstractEndogenous retroviruses (ERVs), remnants of ancient germline infections, comprise 8% of the human genome. The most recently integrated includes human ERV-K (HERV-K) where several envelope (env) sequences remain intact. Viral pseudotypes decorated with one of those Envs are infectious. Using a recombinant vesicular stomatitis virus encoding HERV-K Env as its sole attachment and fusion protein (VSV-HERVK) we conducted a genome-wide haploid genetic screen to interrogate the host requirements for infection. This screen identified 11 genes involved in heparan sulfate biosynthesis. Genetic inhibition or chemical removal of heparan sulfate and addition of excess soluble heparan sulfate inhibit infection. Direct binding of heparin to soluble HERVK Env and purified VSV-HERVK defines it as critical for viral attachment. Cell surface bound VSV-HERVK particles are triggered to infect on exposure to acidic-pH, whereas acid pH pretreatment of virions blocks infection. Testing of additional endogenous HERV-Kenvsequences reveals they bind heparin and mediate acid pH triggered fusion. This work reconstructs and defines key steps in the infectious entry pathway of an extinct virus.Author SummaryThe genomes of all vertebrates are littered with the remains of once exogenous retroviruses. The properties of these ancient viruses that fostered germline colonization and their subsequent inheritance as genetic elements are largely unknown. The viral envelope protein (Env) dictates the cell entry pathway. Here we define host factors involved in the cell-entry of the youngest human ERV, HERV-K. Using a forward genetic screen, we identified heparan sulfate as a critical mediator of productive cell-entry. The abundance of this carbohydrate on almost all cells in the body suggests that HERV-K endogenization was a consequence of a broad tropism and not a specific targeting of germ cells. We demonstrate that multiple HERV-K Env protein encoded in the genome bind heparin. As HERV-K Envs are expressed in some transformed and virus-infected cells as well as during inflammation, it is tempting to speculate that this heparan sulfate binding property could be physiologically relevant during disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献