Buffer Therapy in Acute Metabolic Acidosis: Effects on Acid-Base Status and Glomerular Permeability

Author:

Schnapauff Jan,Piros David,Rippe Anna,Bentzer Peter,Clyne NaomiORCID,Öberg Carl M.ORCID

Abstract

ABSTRACTBackground:Correction of acute metabolic acidosis using sodium bicarbonate is effective, but has been hypothesized to exacerbate intra-cellular acidosis causing cellular dysfunction. The effects of acidemia and bicarbonate therapy on the cellular components of the glomerular filtration barrier, crucial for the integrity of the renal filter, are as yet unknown. Controversy persists regarding the most appropriate method to assess acid-base status: the “Stewart approach” or the “Siggaard-Andersen approach” using the standard base excess (SBE).Methods:Here we performed physiological studies in anesthetized Sprague-Dawley rats during severe metabolic acidosis (HCl iv 6 mmol kg-1) and following bicarbonate (2.5 mmol kg-1) administration. We assessed glomerular permeability using sieving coefficients of polydisperse fluorescein isothiocyanate (FITC)-Ficoll 70/400. Acid-base status was evaluated using SBE, standard bicarbonate, total CO2, the Stewart-Fencl strong ion difference (ΔSID = Na – Cl – 38) and a theoretical model of plasma and erythrocyte strong ion difference.Results:Our data show that neither acidosis nor its correction with NaHCO3altered glomerular permeability. We identified ΔSID as a strong estimator of plasma base excess (as assessed using the Van Slyke equation).In silicomodeling indicates that changes in the strong ion difference in erythrocytes would explain their buffering effect by means of a shift of anions from the extracellular fluid.Conclusion:These data demonstrate a remarkable tolerance of the glomerular filter to severe acute acidosis and bicarbonate therapy. Our results also cast light on the buffer mechanism in erythrocytes and the ability of different acid-base parameters to evaluate the extent of an acid-base disorder.IMPORTANCE STATEMENTMetabolic acidosis is a frequent complication of acute kidney injury in critically ill patients and is associated with a high risk of mortality. Correction of acidosis using sodium bicarbonate is simple and effective, but could possibly induce intracellular acidosis causing cellular dysfunction. The effects of acidemia and subsequent bicarbonate treatment on the cellular components of the glomerular filtration barrier, crucial for the integrity of the renal filter, are unknown. We show that neither severe acidemia nor bicarbonate therapy appear to have negative effects on glomerular permeability. Our analysis also highlights the buffering effects of erythrocytes, which appear to be mediated by a shift of strong anions into the red cells, increasing the strong ion difference in the extracellular fluid.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3