Comparative transcriptomics of a monocotyledonous geophyte reveals shared molecular mechanisms of underground storage organ formation

Author:

Tribble Carrie M.ORCID,Martínez-Gómez JesúsORCID,Alzate-Guarin FernandoORCID,Rothfels Carl J.ORCID,Specht Chelsea D.ORCID

Abstract

AbstractMany species from across the vascular plant tree-of-life have modified standard plant tissues into tubers, bulbs, corms, and other underground storage organs (USOs), unique innovations which allow these plants to retreat underground. Our ability to understand the developmental and evolutionary forces that shape these morphologies is limited by a lack of studies on certain USOs and plant clades. Bomarea multiflora (Alstroemeriaceae) is a monocot with tuberous roots, filling a key gap in our understanding of USO development. We take a comparative transcriptomics approach to characterizing the molecular mechanisms of tuberous root formation in B. multiflora and compare these mechanisms to those identified in other USOs across diverse plant lineages. We sequenced transcriptomes from the growing tip of four tissue types (aerial shoot, rhizome, fibrous root, and root tuber) of three individuals of B. multiflora. We identify differentially expressed isoforms between tuberous and non-tuberous roots and test the expression of a priori candidate genes implicated in underground storage in other taxa. We identify 271 genes that are differentially expressed in root tubers versus non-tuberous roots, including genes implicated in cell wall modification, defense response, and starch biosynthesis. We also identify a phosphatidylethanolamine-binding protein (PEBP), which has been implicated in tuberization signalling in other taxa and, through gene-tree analysis, place this copy in a phylogenytic context. These findings suggest that some similar molecular processes underlie the formation of underground storage structures across flowering plants despite the long evolutionary distances among taxa and non-homologous morphologies (e.g., bulbs versus tubers).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3