The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans

Author:

Roberts Buceta Paloma M.,Romanelli-Cedrez Laura,Babcock Shannon J.,Xun Helen,VonPaige Miranda L.,Higley Thomas W.,Schlatter Tyler D.,Davis Dakota C.,Drexelius Julia A.,Culver John C.,Carrera Inés,Shepherd Jennifer N.,Salinas Gustavo

Abstract

ABSTRACTA key metabolic adaptation for some species that face hypoxia as part of their life-cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and this pathway has remained elusive. We used Caenorhabditis elegans as a model animal to elucidate several key steps in RQ biosynthesis. Through RNA interference and a series of mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo. Deletion of kynu-1, which encodes a kynureninase that converts L-kynurenine (KYN) into anthranilic acid (AA), and 3-hydroxykynurenine (HKYN) into 3-hydroxyanthranilic acid (3HAA), completely abolishes RQ biosynthesis, but does not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to HKYN, drastically reduces RQ, but not Q levels. Knockdown of the Q biosynthetic genes, coq-5 and coq-6, affects both Q and RQ levels demonstrating that common enzymes are used in both biosynthetic pathways. Our study reveals that two pathways for RQ biosynthesis have independently evolved. In contrast to bacteria, where amination is the last step in RQ biosynthesis, worms begin with the arylamine precursor, AA or 3HAA. Since RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have broad implications for targeting parasitic infections which cause important neglected tropical diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3