A Pif1-dependent threshold separates DNA double-strand breaks and telomeres

Author:

Strecker Jonathan,Durocher DanielORCID

Abstract

AbstractThe natural ends of chromosomes resemble DNA double-strand breaks (DSBs) and telomeres are therefore necessary to prevent recognition by the DNA damage response. The enzyme telomerase can also generate new telomeres at DSBs, resulting in the loss of genetic information distal to the break. How cells deal with different DNA ends is therefore an important decision. One critical point of regulation is to limit telomerase activity at DSBs and this is primarily accomplished in budding yeast by the telomerase inhibitor Pif1. Here we use Pif1 as a sensor to gain insight into the cellular decision at DSB ends with increasing telomeric character. We uncover a striking transition point in which 34 bp of telomeric (TG1-3)n repeat sequence is sufficient to render a DNA end insensitive to Pif1, thereby facilitating extension by telomerase. This phenomenon is unlikely to be due to Pif1 modification and we propose that Cdc13 confers a unique property to the TG34 end that prevents Pif1 action. We identify novel Cdc13 mutations that resensitize DNA ends to Pif1 and discover that many Cdc13 telomerase-null mutations are dependent on Pif1 status. Finally, the observed threshold of Pif1 activity recapitulates several properties of both DSBs and telomeres and we propose that this is the dividing line between these entities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3