Morphology-driven downscaling of Streptomyces lividans to micro-cultivation

Author:

van Dissel DinoORCID,van Wezel Gilles P.ORCID

Abstract

ABSTRACTActinobacteria are prolific producers of secondary metabolites and industrially relevant enzymes. Growth of these mycelial microorganisms in small culture volumes is challenging due to their complex morphology. Since morphology and production are typically linked, scaling down culture volumes requires better control over morphogenesis. In larger scale platforms, ranging from shake flasks to bioreactors, the hydrodynamics play an important role in shaping the morphology and determining product formation. Here, we report on the effects of agitation on the mycelial morphology of Streptomyces lividans grown in microtitre plates (MTP). Our work shows that at the proper agitation rates cultures can be scaled down to volumes as small as 100 μl while maintaining the same morphology as seen in larger scale platforms. Using image analysis we compared the morphologies of the cultures; when agitated at 1400 rpm the mycelial morphology in microcultures approached that obtained in shake flasks, while product formation was also maintained. Our study shows that the morphology of actinobacteria in microcultures can be controlled in a similar manner as in larger scale cultures by carefully controlling the mixing rate. This could facilitate high-throughput screening and upscaling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3