Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila.

Author:

Gray S,Levine M

Abstract

The early Drosophila embryo provides a unique system for the analysis of transcriptional repression since a broad spectrum of repressors are distributed in spatially distinct patterns. Krüppel (Kr) and snail (sna), two zinc finger repressors, are essential for segmentation and for the establishment of the mesoderm/neuroectoderm boundary, respectively. Both repressors were examined in the context of synthetic gene complexes containing modular promoters and divergently transcribed reporter genes. These studies indicate that Kr and sna function as short-range repressors, which can mediate either quenching or direct repression of the transcription complex, depending on the location of repressor sites. When located within an upstream enhancer, the repressor locally quenches nearby activators and permits other enhancers to interact with the transcription complex (enhancer autonomy). In contrast, when bound to promoter-proximal regions the repressor functions in a dominant fashion and blocks multiple enhancers. Local quenching and dominant repression require close linkage (<100 bp) of the repressor with either upstream activators or the transcription complex. These studies establish short-range repression as a flexible form of gene regulation and suggest that the key distinction among repressors is their range of action.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3