Abstract
The molybdenum cofactor (Moco) is a 520-Da prosthetic group that is synthesized in all domains of life. In animals, four oxidases (among them sulfite oxidase) use Moco as a prosthetic group. Moco is essential in animals; humans with mutations in genes that encode Moco biosynthetic enzymes display lethal neurological and developmental defects. Moco supplementation seems a logical therapy; however, the instability of Moco has precluded biochemical and cell biological studies of Moco transport and bioavailability. The nematode Caenorhabditis elegans can take up Moco from its bacterial diet and transport it to cells and tissues that express Moco-requiring enzymes, suggesting a system for Moco uptake and distribution. Here we show that protein-bound Moco is the stable, bioavailable species of Moco taken up by C. elegans from its diet and is an effective dietary supplement, rescuing a C. elegans model of Moco deficiency. We demonstrate that diverse Moco:protein complexes are stable and bioavailable, suggesting a new strategy for the production and delivery of therapeutically active Moco to treat human Moco deficiency.
Funder
National Institutes of Health
Deutsche Forschungsgemeinschaft
Damon Runyon Fellowship
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献