Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana

Author:

Sato YasuhiroORCID,Shimizu-Inatsugi Rie,Yamazaki Misako,Shimizu Kentaro K.ORCID,Nagano Atsushi J.ORCID

Abstract

AbstractBackground: Genetic variation in plants alters insect abundance and community structure in the field; however, little is known about the importance of a single gene among diverse plant genotypes. In this context, Arabidopsis trichomes provide an excellent system to discern the roles of natural variation and a key gene, GLABRA1, in shaping insect communities. In this study, we transplanted two independent glabrous mutants (gl1-1 and gl1-2) and 17 natural accessions of Arabidopsis thaliana to two localities in Switzerland and Japan.Results: Fifteen insect species inhabited plant accessions, with 10–30% broad-sense heritability of community indices being detected, such as species richness and diversity. The total abundance of leaf-chewing herbivores was negatively correlated with trichome density at both the field sites, while glucosinolates had variable effects on leaf chewers between the two sites. Interestingly, there was a parallel tendency for the abundance of leaf chewers to be higher on gl1-1 and gl1-2 than for their different parental accessions, Ler-1 and Col-0, respectively. Furthermore, the loss of function in the GLABRA1 gene significantly decreased the resistance of plants to the two predominant chewers, flea beetles and turnip sawflies.Conclusions: Overall, our results indicate that insect community composition on A. thaliana is heritable across two distant field sites, with GLABRA1 playing a key role in altering the abundance of leaf-chewing herbivores. Given that such a trichome variation is widely observed in Brassicaceae plants, the present study exemplifies the community-wide impact of a single plant gene on crucifer-feeding insects in the field.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3