Geochemical and metagenomic characterization of Jinata Onsen, a Proterozoic-analog hot spring, reveals novel microbial diversity including iron-tolerant phototrophs and thermophilic lithotrophs

Author:

Ward Lewis M.ORCID,Idei Airi,Nakagawa Mayuko,Ueno Yuichiro,Fischer Woodward W.,McGlynn Shawn E.ORCID

Abstract

AbstractHydrothermal systems, including terrestrial hot springs, contain diverse geochemical conditions that vary over short spatial scales due to progressive interaction between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron-rich hot spring mixes with the oxygenated atmosphere and seawater over short spatial scales, creating a diversity of chemical potentials and redox pairs over a distance ~10 m. We characterized the geochemical conditions along the outflow of Jinata Onsen as well as the microbial communities present in biofilms, mats, and mineral crusts along its traverse via 16S rDNA amplicon and genome-resolved shotgun metagenomic sequencing. The microbial community changed significantly downstream as temperatures and dissolved iron concentrations decreased and dissolved oxygen increased. Near the spring source, biomass is limited relative to downstream, and primary productivity may be fueled by oxidation of ferrous iron and molecular hydrogen by members of the Zetaproteobacteria and Aquificae. Downstream, the microbial community is dominated by oxygenic Cyanobacteria. Cyanobacteria are abundant and active even at ferrous iron concentrations of ~150 μM, which challenges the idea that iron toxicity limited cyanobacterial expansion in Precambrian oceans. Several novel lineages of Bacteria are also present at Jinata Onsen, including previously uncharacterized members of the Chloroflexi and Caldithrichaeota phyla, positioning Jinata Onsen as a valuable site for future characterization of these clades.ImportanceHigh temperatures and reducing conditions allow hot springs to support microbial communities that are very different from those found elsewhere on the surface of the Earth today; in some ways, these environments and the communities they support can be similar to environments that existed on the early Earth and that may exist on other planets. Here, we describe a novel hot spring system where hot, iron-rich but oxygen-poor water flows into the ocean, supporting a range of unique microbial communities. Metagenomic sequencing recovered many novel microbial lineages, including deep-branching and uniquely thermotolerant members of known groups. Comparison of the biological communities in the upstream part of the hot spring, potentially supported by biological iron and hydrogen oxidizing metabolisms, to downstream microbial mats, supported by oxygenic photosynthesis, provides insight into the potential productivity of life during Proterozoic time and on other planets where oxygenic photosynthesis is not possible.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3