Top-Down Beta Oscillatory Signaling Conveys Behavioral Context to Primary Visual Cortex

Author:

Richter Craig G.,Coppola Richard,Bressler Steven L.

Abstract

AbstractTop-down modulation of sensory processing is a critical neural mechanism subserving a number of important cognitive roles. Principally, top-down influences appear to inform lower-order sensory systems of the current ‘task at hand’, and thus may convey behavioral context to these systems. Accumulating evidence indicates that top-down cortical influences are carried by directed interareal synchronization of oscillatory neuronal populations. An important question currently under investigation by a number of laboratories is whether the information conveyed by directed interareal synchronization depends on the frequency band in which it is conveyed. Recent results point to the beta frequency band as being particularly important for conveying task-related information. However, little is known about the nature of the information conveyed by top-down directed influences. To investigate the information content of top-down directed beta-frequency influences, we measured spectral Granger Causality using local field potentials recorded from microelectrodes chronically implanted in visual cortical areas V1, V4, and TEO, and then applied multivariate pattern analysis to the spatial patterns of top-down spectral Granger Causality in the visual cortex. We decoded behavioral context by discriminating patterns of top-down (V4/TEO → V1) beta-peak spectral Granger Causality for two different task rules governing the correct responses to visual stimuli. The results indicate that top-down directed influences in visual cortex are carried by beta oscillations, and differentiate current task demands even before visual stimulus processing. They suggest that top-down beta-frequency oscillatory processes may coordinate the processing of sensory information by conveying global knowledge states to early levels of the sensory cortical hierarchy independently of bottom-up stimulus-driven processing.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Directed Interregional Brain Interactions;Brain Network Dysfunction in Neuropsychiatric Illness;2021

2. Anticipatory Top-Down Interactive Neural Dynamics;Advances in Cognitive Neurodynamics (VI);2018

3. From static to temporal network theory: Applications to functional brain connectivity;Network Neuroscience;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3