A global envelope test to detect early and late bursts of trait evolution

Author:

Murrell D. J.ORCID

Abstract

AbstractThe joint analysis of species’ evolutionary relatedness and their morphological evolution has offered much promise in understanding the processes that underpin the generation of biological diversity. Disparity through time (DTT) is a popular method that estimates the relative trait disparity within and between subclades at each time point, and compares this to the null hypothesis that trait values follow an uncorrelated random walk along the time calibrated phylogenetic tree. A simulation envelope is normally created by calculating, at every time point, the 95% minimum and 95% maximum disparity values from multiple simulations of the null model on the phylogenetic tree. The null hypothesis is rejected whenever the empirical DTT curve falls outside of this envelope, and these time periods may then be linked to events that may have sparked non-random trait evolution. However, this method of envelope construction leads to multiple testing and a poor, uncontrolled, false positive rate. As a consequence it cannot be recommended. A recently developed method in spatial statistics is introduced that constructs a confidence envelope by giving each DTT curve a single ranking value based upon its most extreme disparity value. This method avoids the pitfalls of multiple testing whilst retaining a visual interpretation. Results using simulated data show this new test has desirable type 1 properties and is at least as powerful in correctly rejecting the null hypothesis as the morphological disparity index and node height test that lack a visual interpretation. Three example datasets are reanalyzed to show how the new test may lead to different inferences being drawn. Overall the results suggest the new rank envelope test should be used in null model testing for DTT analyses, and that there is no need to combine the envelope test with other tests such as has been done previously. Moreover, the rank envelope method can easily be adopted into recently developed posterior predictive simulation methods. More generally, the rank envelope test should be adopted when-ever a null model produces a vector of correlated values and the user wants to determine where the empirical data is different to the null model.

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. Arbour J. H. & Lopez-Fernandez H. (2016) Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics. Proceedings of the Royal Society B-Biological Sciences, 283.

2. Brain shape convergence in the adaptive radiation of New World monkeys

3. On tests of spatial pattern based on simulation envelopes

4. AN ADAPTIVE RADIATION OF FROGS IN A SOUTHEAST ASIAN ISLAND ARCHIPELAGO

5. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3