Asymmetric Diversification of Mating Pheromones in Fission Yeast

Author:

Seike TaisukeORCID,Shimoda Chikashi,Niki Hironori

Abstract

AbstractIn fungi, mating between partners critically depends on the molecular recognition of two peptidyl mating pheromones by their respective receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M), which secrete two different mating pheromones: P-factor recognized by Mam2, and M-factor recognized by Map3, respectively. Our recent study demonstrated that a few mutations in both M-factor and Map3 can trigger reproductive isolation, a cause of speciation, in S. pombe. Here we explored the mechanism underlying reproductive isolation through genetic changes of pheromones and receptors. We investigated the diversity of genes encoding the pheromones and their receptor in 150 S. pombe wild strains. Whereas the amino acid sequences of M-factor and Map3 were completely conserved, those of P-factor and Mam2 were very diverse. In addition, the P-factor gene contained varying numbers of tandem repeats of P-factor (4–8 repeats). We also explored the recognition specificity of pheromones between S. pombe (Sp) and its close relative Schizosaccharomyces octosporus (So). So-M-factor did not have an effect on S. pombe P-cells, but So-P-factor had a partial effect on S. pombe M-cells, allowing them to mate successfully. Thus, recognition of M-factor seems to be tight, whereas that of P-factor is relatively loose. Moreover, diversity of P-factor and Mam2 might be due to a P-factor-specific peptidase. Overall, the asymmetric system for pheromone recognition in yeasts seems to allow flexible adaptation to mutational changes in the combination of pheromone and receptor while maintaining tight recognition for mating partners.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3