High-fidelity Musculoskeletal Modeling Reveals a Motor Planning Contribution to the Speed-Accuracy Tradeoff

Author:

Al Borno Mazen,Vyas Saurabh,Shenoy Krishna V.,Delp Scott L.

Abstract

AbstractThe speed-accuracy tradeoff is a fundamental aspect of goal-directed motor behavior, empirically formalized by Fitts’ law, which relates movement duration to movement distance and target width. Here, we introduce a computational model of three-dimensional upper extremity movements that reproduces well-known features of reaching movements and is more biomechanically realistic than previous models. Critically, these features arise without the need of signal-dependent noise. We analyzed motor cortical neural activity from monkeys reaching to targets of different sizes. We found that the contribution of preparatory neural states to movement duration variability was greater for smaller targets than larger targets, and that movements to smaller targets exhibited less variability in preparatory neural states, but greater movement duration variability. Taken together, these results suggest that Fitts’ law emerges from greater task demands constraining the optimization landscape in a fashion that reduces the number of “good” control solutions (i.e., faster reaches). Thus, the speed-accuracy tradeoff could be a consequence of motor planning variability and optimal control theory, and not exclusively signal-dependent noise, as is currently held.Significance StatementA long-standing challenge in motor neuroscience is to understand the relationship between movement speed and accuracy, known as the speed-accuracy tradeoff. We introduce a computational model of reaching movements based on optimal control theory using a realistic model of musculoskeletal dynamics. The model synthesizes three-dimensional point-to-point reaching movements that reproduce kinematics features reported in motor control studies. Such high-fidelity modeling reveals that the speed-accuracy tradeoff as described by Fitts’ law emerges even without the presence of motor noise, which is commonly believed to underlie the speed-accuracy tradeoff. This suggests an alternative theory based on suboptimal control solutions. The crux of this theory is that some features of human movement are attributable to planning variability rather than execution noise.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3