Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes

Author:

Nottingham Andrew T.,Fierer Noah,Turner Benjamin L.,Whitaker Jeanette,Ostle Nick J.,McNamara Niall P.,Bardgett Richard D.,Leff Jonathan W.,Salinas Norma,Silman Miles,Kruuk Loeske,Meir Patrick

Abstract

SummaryMore than 200 years ago, von Humboldt reported decreases in tropical plant species richness with increasing elevation and decreasing temperature. Surprisingly, co-ordinated patterns in plant, bacterial and fungal diversity on tropical mountains are yet to be observed, despite the central role of soil microorganisms in terrestrial biogeochemistry. We studied an Andean transect traversing 3.5 km in elevation to test whether the species diversity and composition of tropical forest plants, soil bacteria and fungi can follow similar biogeographical patterns with shared environmental drivers. We found co-ordinated changes with elevation in all three groups: species richness declined as elevation increased, and the compositional-dissimilarity of communities increased with increased separation in elevation, although changes in plant diversity were larger than in bacteria and fungi. Temperature was the dominant driver of these diversity gradients, with weak influences of edaphic properties, including soil pH. The gradients in microbial diversity were strongly correlated with the activities of enzymes involved in organic matter cycling, and were accompanied by a transition in microbial traits towards slower-growing, oligotrophic taxa at higher elevations. We provide the first evidence of co-ordinated temperature-driven patterns in the diversity and distribution of three major biotic groups in tropical ecosystems: soil bacteria, fungi and plants. These findings suggest that, across landscape scales of relatively constant soil pH, inter-related patterns of plant and microbial communities with shared environmental drivers can occur, with large implications for tropical forest communities under future climate change.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. The UNITE database for molecular identification of fungi – recent updates and future perspectives

2. Baas Becking, L. G. M. 1934. Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague, the Netherlands.

3. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest

4. Belowground biodiversity and ecosystem functioning

5. Bruijnzeel, L. A. , F. N. Scatena , and L. S. Hamilton . 2011. Tropical Montane Cloud Forests. Cambridge University Press, Cambridge, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3